
Acta Cryst. (2001). D57, 1351±1353 Langs et al. � Map self-validation 1351

short communications

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

Map self-validation: improved criteria to resolve the
SIR or SAS phase ambiguity

David A. Langs,* Robert H.

Blessing and Dongyao Guo

Hauptman±Woodward Medical Research

Institute Inc., 73 High Street, Buffalo, NY 14203,

USA

Correspondence e-mail:

langs@algol.hwi.buffalo.edu

# 2001 International Union of Crystallography

Printed in Denmark ± all rights reserved

A procedure was recently described that used the correlation

coef®cient (CC) agreement between the observed |Fh| and their

associated unbiased `omit map' extrapolated values |Xh| from an

initial trial map as the basis for resolving the SIR or SAS phase

ambiguity. It is noted here that a signi®cant improvement in

selectivity can be obtained if this agreement is expressed in terms

of the complex-valued Fh and Xh. A new scheme is outlined to exploit

the weighted average of the two SIR or SAS phase choices. This

procedure requires six FFTs per phase compared with three for the

older method that randomly selected either of the two permitted

phase choices from the Argand diagram as starting values. Trial

calculations are encouraging for applications as low as 4 AÊ resolution.
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1. Background

A previous paper (Langs et al., 2001) described

a validation method whereby a set of unbiased

structure-factor estimates, Xh, could be ef®-

ciently computed from an initial trial map.

Values for each Xh are in principle extra-

polated from a series of density-modi®ed maps,

from each of which in turn the associated Fh

term has been excluded.

This procedure thus requires two FFTs for

each estimated Xh: the ®rst to compute the

map for which any particular Fh has been

excluded and the second to back-transform this

map after it has been modi®ed to obtain the

value Xh. Since macromolecular data sets

generally include thousands of independent

measured Fh data, such brute-force calcula-

tions to obtain the Xh values are clearly out of

the question. Remarkably, in its place, a

Fourier convolution relationship was used to

obtain the full set of Xh values in only three

FFTs: (i) �(r) is computed for the full set of Fh

values; �(r) is modi®ed to �0(r) by zeroing the

density below some low threshold value, say

0.25�(�); (ii) �0(r) is back-transformed to

obtain biased estimates, F 0h, of Fh; �(r) is a

mask of �0(r) that equals 1.0 if �0(r) 6� 0; (iii)

�(r) is back-transformed to obtain its Fourier

coef®cients Gh. The de®ning equation for each

Xh is

Xh � F 0h ÿ �1=V�P
hj

Fhj
Ghÿhj

; �1�

where the summation over hj back-corrects

each F 0h for the symmetry-related forms of Fh

that must be excluded from �(r) prior to esti-

mating each Xh.

Note that the variance, �2(�), associated

with any electron-density map is in the limit of

integration independent of the phases of the

data. It need not be computed from the actual

grid-point densities of the map, but rather the

sum of the |Fh|2 themselves in accordance with

Parseval's equality (Read, 1997),

�2��� � RV ��r�2 dV=
R

V dV

�Ph jFhj2=V2: �2�
It is possible to compare any two phase-

related maps, that is two maps for which all the

phases are identical except one, which is

assigned a different value, '1 versus '2, in each

map. The CC agreement between the full set of

Fh and Xh values is often a good indicator as to

which of the two phase values for a particular

Fh is best. The better map usually has the larger

CC value and the best phase indications are

generally associated with the largest differ-

ences |�CC| = |CC'1 ÿ CC'2| between both CC

values. In this regard, we previously used

CCR �
�hjFhXhji ÿ hjFhjihjXhji�

��hjFhj2i ÿ hjFhji2��hjXhj2i ÿ hjXhji2��1=2
;

�3�
which was based on the magnitudes of Fh and

Xh. If, however, we consider evaluating this CC

agreement in real space rather than reciprocal

space by computing the density

�00�r� �PXh exp�ÿ2�ih � r�; �4�
it can be shown (Read, 1986) that
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CC� �
R

V ��r��00�r� dV=�������00� RV dV �5�
�Ph jFhX�h j cos�'h ÿ  h�=�������00�V;

which involves taking the real value of the

sum of the product of complex structure

factors. Since tests showed that CC� was

comparable in selectivity to CCR, we to

decided to examine the CC based on

complex values of Fh = Ah + iBh and

Xh = �h + i�h, where X�h = Xÿh,

CCC �
�hFhX�h i ÿ hFhihXhi�

��hjFhj2i ÿ hFhi2��hjXhj2i ÿ hXhi2��1=2

� �hAh�h � Bh�hi ÿ hAhih�hi�
��hjFhj2i ÿ hAhi2��hjXhj2i ÿ h�hi2��1=2

:

�6�

A problem arises in comparing maps that

use phase indications that are weights of

several different probable values (Bokhoven

et al., 1951; Blow & Rossmann, 1961).

In such calculations, an average phase

of ('1 + '2)/2 and an amplitude of

|Fh|cos[('1 ÿ '2)/2] are used. Given two

maps, one for which Fh has either the phase

'1 or '2 and the other for which

|Fh|cos('1 ÿ '2) has the phase-averaged

value, the map variances are not identical,

�2���'1
� �2���'2

� �2���'1�'2
�7�

� �1ÿ cos2�'1 � '2��jFhj2=V2:

Small differences in the threshold values at

which maps are modi®ed will markedly

effect the CC agreement between Fh and the

Xh. If a map in which a particular Fh is

averaged is compared with one in which Fh is

assigned a discrete phase value and the maps

are compared at the same absolute threshold

value for low-density elimination, the phase-

averaged map will tend to compute a larger

CC value, regardless as to whether the

discrete tested value is closer to its true

value or not. One can, however, avoid this

impasse if one initially assigns phase-

averaged values for all data, but for each

particular Fh computes two maps, one for

each discrete phase possibility. Under these

circumstances the compared maps will have

the same variance, but the comparison will

require three FFTs for each SIR/SAS phase

choice (a total of six) compared with only

three FFTs per phase for the older method

(since the initial starting map has already

sampled one of the two permitted phase

choices).

Table 1
Top 100 sign indications for the 3.75 AÊ cytochrome c550 SIR data.

The phases A were randomly selected as either the correct (+) or incorrect (ÿ) Argand diagram choice as labeled
following the serial number in columns 2 and 4. Correlation coef®cient results based on both the amplitudes (CCR) and
complex values (CCC) of Fh and Xh are listed. The results are sorted in descending order on the value of �CC followed by
an asterisk if the entry indicates a phasing error. In B, phases were assigned the weighted average of the two SIR choices.
The |�CC| results are sorted as in A and appended with an asterisk should the wrong phase choice be selected by the
larger of the two CC values.

A B

Rank Ser �CCR Ser �CCC Ser |�CCR| Ser |�CCC|

1 3 ÿ 0.01390 23 ÿ 0.01776 1 0.04523 1 0.03443
2 57 ÿ 0.01378 4 ÿ 0.01504 4 0.02713 5 0.03377
3 13 ÿ 0.01108 5 ÿ 0.01163 7 0.02401 7 0.03049
4 51 ÿ 0.00956 19 ÿ 0.00920 72 0.02325 4 0.02971
5 45 ÿ 0.00952 54 ÿ 0.00909 5 0.02272 15 0.02690
6 4 ÿ 0.00908 72 ÿ 0.00833 25 0.02187 23 0.02142
7 72 ÿ 0.00890 45 ÿ 0.00753 83 0.01925 14 0.02137
8 31 + 0.00636* 13 ÿ 0.00694 24 0.01916 3 0.02027
9 83 ÿ 0.00551 11 ÿ 0.00681 19 0.01865 27 0.01996
10 46 + 0.00511* 53 + 0.00672* 63 0.01854 59 0.01815
11 80 ÿ 0.00436 26 ÿ 0.00662 85 0.01850* 72 0.01773
12 88 ÿ 0.00331 3 ÿ 0.00620 6 0.01800 9 0.01581
13 54 ÿ 0.00321 51 ÿ 0.00557 82 0.01706 25 0.01480
14 86 + 0.00290* 84 ÿ 0.00549 15 0.01644 81 0.01326
15 33 ÿ 0.00224 96 ÿ 0.00542 14 0.01555 26 0.01297
16 52 + 0.00194* 25 ÿ 0.00521 59 0.01530 92 0.01281
17 65 ÿ 0.00180 83 ÿ 0.00498 8 0.01510* 83 0.01265
18 2 ÿ 0.00142 27 ÿ 0.00494 23 0.01483 19 0.01264
19 60 ÿ 0.00131 17 + 0.00408* 41 0.01449 94 0.01230
20 48 ÿ 0.00121 63 ÿ 0.00374 58 0.01430 32 0.01192
21 67 + 0.00108* 74 ÿ 0.00366 27 0.01313 55 0.01191
22 76 ÿ 0.00045 57 ÿ 0.00320 92 0.01217 10 0.01188
23 23 ÿ 0.00037 8 ÿ 0.00292 32 0.01154 52 0.01152
24 78 + 0.00024* 97 + 0.00278* 45 0.01039 78 0.01113
25 55 + 0.00021* 58 ÿ 0.00265 93 0.01037 58 0.01095
26 77 ÿ 0.00014 86 + 0.00257* 60 0.01009 51 0.01032
27 100 + ÿ0.00003 9 ÿ 0.00251 35 0.00981 48 0.01019
28 89 + ÿ0.00005 98 + 0.00209* 81 0.00979 82 0.01006
29 94 + ÿ0.00011 61 ÿ 0.00177 57 0.00977* 90 0.00992
30 11 ÿ ÿ0.00012* 16 + 0.00169* 48 0.00967 93 0.00976
31 66 ÿ ÿ0.00029* 44 + 0.00166* 94 0.00965 45 0.00948
32 35 ÿ ÿ0.00036* 52 + 0.00126* 51 0.00934 65 0.00921
33 12 + ÿ0.00041 47 ÿ 0.00099 54 0.00920 41 0.00910
34 20 + ÿ0.00047 35 ÿ 0.00097 52 0.00913 47 0.00852
35 91 + ÿ0.00053 65 ÿ 0.00089 10 0.00893 98 0.00848
36 32 ÿ ÿ0.00071* 33 ÿ 0.00067 31 0.00884* 17 0.00838
37 61 ÿ ÿ0.00087* 80 ÿ 0.00006 40 0.00854 6 0.00836
38 58 ÿ ÿ0.00087* 76 ÿ ÿ0.00005* 80 0.00798 12 0.00786
39 19 ÿ ÿ0.00102* 60 ÿ ÿ0.00019* 74 0.00776* 39 0.00775
40 49 + ÿ0.00108 79 ÿ ÿ0.00056* 12 0.00771 61 0.00769
41 50 + ÿ0.00120 90 ÿ ÿ0.00061* 34 0.00743 64 0.00765
42 79 ÿ ÿ0.00156* 71 ÿ ÿ0.00080* 90 0.00741 60 0.00759
43 25 ÿ ÿ0.00160* 68 + ÿ0.00085 47 0.00733 96 0.00740
44 44 + ÿ0.00164 69 + ÿ0.00092 11 0.00722* 99 0.00726
45 70 + ÿ0.00169 24 + ÿ0.00101 3 0.00720 16 0.00722
46 47 ÿ ÿ0.00174* 38 + ÿ0.00121 65 0.00712 24 0.00704
47 40 ÿ ÿ0.00180* 56 + ÿ0.00131 64 0.00670 38 0.00676
48 95 ÿ ÿ0.00184* 67 + ÿ0.00151 26 0.00669 43 0.00667
49 71 ÿ ÿ0.00200* 40 ÿ ÿ0.00152* 70 0.00630* 56 0.00647
50 62 + ÿ0.00202 92 + ÿ0.00154 2 0.00630 67 0.00625
51 68 + ÿ0.00208 36 ÿ ÿ0.00155* 20 0.00584 80 0.00609
52 56 + ÿ0.00223 100 + ÿ0.00162 46 0.00580* 76 0.00576
53 27 ÿ ÿ0.00226* 50 + ÿ0.00202 17 0.00571* 84 0.00558
54 30 ÿ ÿ0.00272* 88 ÿ0.00225* 68 0.00568 71 0.00552
55 9 ÿ ÿ0.00293* 85 + ÿ0.00304 43 0.00548 53 0.00532
56 75 + ÿ0.00305 87 + ÿ0.00313 88 0.00541 33 0.00501
57 16 + ÿ0.00307 32 ÿ ÿ0.00313* 66 0.00534 89 0.00500
58 97 + ÿ0.00322 31 + ÿ0.00315 95 0.00530 63 0.00499
59 99 + ÿ0.00326 22 ÿ ÿ0.00322* 56 0.00516 49 0.00499
60 15 + ÿ0.00333 70 + ÿ0.00470 79 0.00510 18 0.00484
61 73 + ÿ0.00346 37 + ÿ0.00489 18 0.00503* 29 0.00441
62 53 + ÿ0.00375 89 + ÿ0.00495 78 0.00489 37 0.00420
63 85 + ÿ0.00422 46 + ÿ0.00502 29 0.00485 2 0.00379
64 96 ÿ ÿ0.00436* 28 ÿ ÿ0.00523* 37 0.00473* 22 0.00370
65 5 ÿ ÿ0.00436* 75 + ÿ0.00525 77 0.00471 85 0.00363*
66 43 + ÿ0.00440 93 + ÿ0.00544 22 0.00447* 54 0.00354
67 74 ÿ ÿ0.00453* 64 ÿ ÿ0.00560* 87 0.00444 42 0.00352
68 39 + ÿ0.00457 91 + ÿ0.00582 33 0.00430 97 0.00342
69 21 + ÿ0.00525 29 + ÿ0.00606 16 0.00414* 35 0.00335
70 84 ÿ ÿ0.00542* 48 ÿ ÿ0.00621* 89 0.00391 74 0.00334*
71 90 ÿ ÿ0.00565* 82 + ÿ0.00635 21 0.00373 34 0.00333
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2. Test example

Error-free SIR data for cytochrome c550

were computed from the published coordi-

nates (PDB entry 155c; Timkovich &

Dickerson, 1976) as reported previously. The

iron-containing protein was considered to be

the heavy-atom derivative; the native struc-

ture omitted the Fe-atom site. The primary

data ®le contained h, k, l, |F|, '1, '2 and

|Fsin[('1 ÿ '2)/2]| and was sorted in

decreasing order of the magnitude of the

|Fsin| term. This places those re¯ections at

the top of the list that have the greatest

effect on altering map features upon chan-

ging phase values from '1 to '2. Our

previous tests had compared both SIR and

SAS data and results for three different

resolution ranges: 2.65, 3.75 and 5.3 AÊ . In

this presentation, it will suf®ce to present

only SIR results for the 3.75 AÊ range (1299

re¯ections). In Table 1, we compare the old

scheme (A) in which the phases of the initial

map were randomly chosen as either '1 or '2

[r.m.s.�(') = 64�] and the new scheme (B)

for which all data were initially assigned the

averaged phase and amplitude [r.m.s.�(') =

45�]. Results based on both CCR and CCC

for the top 100 SIR phase choices of the

sorted data list are presented. Columns were

sorted in decreasing order on the values of

�CC = CC'1ÿ CC'2. Phase choices that have

the largest �CC values tend to be more

reliable and sort to the top of each column.

3. Summary

The results in part A of Table 1 clearly show

a small advantage in using CCC in prefer-

ence to CCR in resolving the SIR phase

ambiguity. In column 3 there are seven

phasing errors (*) noted in the top 25 indi-

cations based on �CCR, compared with three

errors in column 5 as indicated by �CCC.

However, the results from part B of Table 1

are even more encouraging. Whereas the

®rst errors occur at lines 11, 17 and 29 in

column 7 for CCR, it is remarkable to note

that CCC offers far more selectivity in

identifying the correct SIR phase choice

based on the same basis set of Fh and Xh

values. The ®rst SIR phasing error occurs at

line 65 in column 9, compared with line 11 in

column 7. Given these results, it is fairly easy

to reduce the overall phase error of the

3.75 AÊ SIR data set to less than 10� in a

small number of passes through the full set

of data.

4. Closing remarks

We previously noted that our concept of

unbiased Xh estimates is the reciprocal-

space analogue of the well known `omit-

map' procedure (Bhat & Cohen, 1984) that

is performed in real space. Figures of merit,

such as the free R value (BruÈ nger, 1993),

which rely on excluding small ®xed or

rotating (Roberts & BruÈ nger, 1995; Cowtan

& Main, 1996) subsets of data from the

re®nement calculations and using their

extrapolated values to monitor the correct-

ness of the re®nement model, can in prin-

ciple be reformulated with Xh estimates to

end the need to exclude data from the

re®nement process. A reviewer has called

attention to similarities between (1) and an

analysis of the `solvent-¯ipping' scheme

used in density modi®cation (Abrahams,

1997). The subtraction of a `-correction'

from the solvent mask can ensure that its

zero-order Fourier transform G0 = 0. This

would in effect correct the map-extrapolated

values of Fh for the FhG0 term, but the

contribution of FÿhG2h and other symmetry-

related terms, Fhj
Ghÿhj

, would remain

neglected.

Given that CCC offers greater selectivity

than CCR in the applications described, one

might expect that the calculation of likeli-

hood [Bricogne, 1984, equation (4.16)] could

be modi®ed to consider the degree of phase

agreement between our initial Fh and its

unbiased extrapolated `non-basis set' value.

The argument of the exponential term used

to compute the likelihood is normally of the

form exp�ÿN�jUobs
h j2 � jUME

h j2��. One might

expect that modifying this expression to

something like exp�ÿ2NjUobs
h UME

h j �
cos�'h ÿ 'ME

h �� might add a signi®cant

degree of selectivity to this measure in the

context of the calculations described in this

paper. However, whether this selectivity is

any better than that provided by CCC

remains to be demonstrated.
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Table 1 (continued)

A B

Rank Ser �CCR Ser �CCC Ser |�CCR| Ser |�CCC|

72 28 ÿ ÿ0.00571* 95 ÿ ÿ0.00643* 98 0.00344 86 0.00329
73 10 ÿ ÿ0.00581* 77 ÿ ÿ0.00648* 28 0.00335 40 0.00294
74 93 + ÿ0.00588 73 + ÿ0.00652 53 0.00306 21 0.00262
75 36 ÿ ÿ0.00596* 21 + ÿ0.00659 71 0.00281* 68 0.00251
76 17 + ÿ0.00609 81 + ÿ0.00719 61 0.00266 70 0.00235
77 98 + ÿ0.00610 49 + ÿ0.00719 99 0.00265 13 0.00228
78 38 + ÿ0.00625 43 + ÿ0.00739 38 0.00265 31 0.00206
79 37 + ÿ0.00633 62 + ÿ0.00745 44 0.00257 95 0.00202
80 22 ÿ ÿ0.00648* 10 ÿ ÿ0.00761* 91 0.00250* 46 0.00197
81 29 + ÿ0.00657 20 + ÿ0.00822 55 0.00227 87 0.00192
82 18 ÿ ÿ0.00672* 99 + ÿ0.00838 67 0.00221 30 0.00162*
83 41 + ÿ0.00674 55 + ÿ0.00843 39 0.00214 62 0.00154
84 63 ÿ ÿ0.00681* 94 + ÿ0.00855 69 0.00212 100 0.00150
85 81 + ÿ0.00720 66 ÿ ÿ0.00908* 97 0.00210* 79 0.00150
86 59 + ÿ0.00758 39 + ÿ0.00921 86 0.00164* 11 0.00149*
87 69 + ÿ0.00829 59 + ÿ0.00965 13 0.00162 69 0.00096
88 87 + ÿ0.00884 15 + ÿ0.00976 76 0.00153* 8 0.00091
89 34 ÿ ÿ0.00919* 78 + ÿ0.00981 100 0.00133* 36 0.00083
90 42 + ÿ0.01030 30 ÿ ÿ0.00996* 49 0.00113* 77 0.00079*
91 82 + ÿ0.01040 41 + ÿ0.01047 62 0.00105* 91 0.00066*
92 92 + ÿ0.01065 14 + ÿ0.01435 73 0.00101 88 0.00062
93 26 ÿ ÿ0.01069* 12 + ÿ0.01449 30 0.00100* 28 0.00043*
94 14 + ÿ0.01141 18 ÿ ÿ0.01564* 36 0.00088 66 0.00033
95 64 ÿ ÿ0.01239* 42 + ÿ0.01732 84 0.00086 73 0.00032*
96 1 ÿ ÿ0.01246* 7 + ÿ0.01863 9 0.00081* 75 0.00031
97 24 + ÿ0.01511 34 ÿ ÿ0.02011* 42 0.00033 44 0.00029*
98 7 + ÿ0.01518 6 + ÿ0.02014 75 0.00031 50 0.00023*
99 8 ÿ ÿ0.01566* 2 ÿ ÿ0.02484* 50 0.00017 57 0.00011*
100 6 + ÿ0.01568 1 ÿ ÿ0.02664* 96 0.00001 20 0.00004*


